The Crystal Structure of $\mathbf{Z n}^{11}$ Propionate $\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{1 0}} \mathbf{O}_{\mathbf{4}} \mathbf{Z n}\right)_{n}$

By E. Goldschmied* and A. D. Rae
School of Chemistry, University of New South Wales, Kensington, NSW 2033, Australia

and N. C. Stephenson
School of Chemical and Earth Sciences, New South Wales Institute of Technology, Broadway, NSW 2007, Australia

(Received 18 June 1975; accepted 31 December 1976)

Abstract

Zinc ${ }^{\text {II }}$ propionate, $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Zn}\right)_{n}$, crystallizes in space group $P 2_{1} / c$ with $a=19.144$ (4), $b=4.794(1), c=$ 9.286 (2) $\AA, \beta=91.8(2)^{\circ}, Z=4, \rho_{\mathrm{c}}=1.65 \mathrm{~g} \mathrm{~cm}^{-3}$. Refinement by full-matrix least squares gave a final $R=$ $\Sigma|\Delta F| / \Sigma\left|F_{0}\right|=0.076$ for the 876 independent observed counter reflexions with $|h|>3$. The $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}$ groups bridge Zn atoms to form a two-dimensional polymer perpendicular to [100]. The Zn atoms have a tetrahedral coordination with a mean $\mathrm{Zn}-\mathrm{O}$ distance of $1.95 \AA$. The crystals were tabular on (100) and were mounted within 5° of this direction. The standard reflexion reduced to 0.65 of its original value during data collection. An uncorrected systematic error in the observed data was largely eliminated by excluding data with $|h|<4$, the excluded data corresponding to reflexions with long path lengths in the crystal. The inappropriateness of standard deviations determined by scaling weights to make $\Sigma w \Delta^{2} /(n-m)=1$ is indicated.

Introduction

The structure of Zn^{11} propionate was determined to detail further the various roles of the anions of carboxylic acids acting as coordinating agents in transitionmetal complexes. Two O atoms in groups such as NO_{3}, CO_{2} and $R \mathrm{COO}$ ($R=$ alkyl) subtend an angle of only about 60° when acting as a bidentate ligand compared with 90° for undistorted square planar or octahedral coordination and 109.5° for undistorted tetrahedral coordination.

The bite of such bidentate groups is too small for satis factory space-filling around the central metal atom and consequently these coordinating agents are often monodentate with respect to a single transition-metal atom, the coordination sphere being filled by coordinated water molecules or by the coordinating agents bridging adjacent transition-metal atoms to form dimeric or polymeric complexes.
$\mathrm{Co}^{\text {II }}$ and $\mathrm{Ni}^{1 \mathrm{II}}$ acetates occur as tetrahydrates (Van Niekerk \& Schoening, 1953a) and form monomeric octahedral complexes with trans unidentate acetate groups. $\mathrm{Zn}^{\mathrm{II}}$ acetate occurs as a dihydrate (Van Niekerk \& Schoening, 1953b) and forms a monomeric complex of distorted octahedral coordination with cis bidentate acetate groups. This coordination could alternatively be described as a tetrahedral coordination with the bidentate acetate groups occupying single tetrahedral coordination positions. $\mathrm{Cu}^{\mathrm{II}}$ acetate occurs as a monohydrate but exists as a dimer (Van Niekerk \&

[^0]Schoening, 1953c) with four acetate groups bridging two Cu atoms $2.64 \AA$ apart. The sixth octahedral coordination position about each Cu atom is occupied by a water molecule.

Anhydrous forms of these complexes and their homologues may be prepared by recrystallization from a mixture of the appropriate acid and its anhydride, thus enforcing the formation of complexes in which the bidentate ligands, because of their small bite, must act as bridging groups between adjacent transition-metal atoms. The structure of anhydrous Cu^{11} propionate has been determined (Simonov \& Malinovskii, 1970) and exists as one-dimensional polymeric chains consisting of dimeric units in which the two Cu atoms are linked by four bridging propionate groups in a manner similar to the monohydrate of Cu^{11} acetate. These dimeric units are linked through the sixth coordination position (formerly occupied by the water molecule) now being occupied by an O atom in the adjacent dimeric unit.

The structures of Cu^{11} formate (Barclay \& Kennard, 1961), $\mathrm{Cu}^{\text {II }}$ formate dihydrate (BukowskaStrzyżewska, 1965), Cu^{11} formate tetrahydrate (Kiriyama, Ibamoto \& Matsuo, 1954) and $\mathrm{Ni}^{1 \mathrm{II}}$ formate dihydrate (Krogman \& Mattes, 1963) have also been determined and in all cases the formate group acts as a bridge between different transition-metal atoms in one, two or three-dimensional polymeric networks.

Zn can exist in both octahedral $\left[\mathrm{Zn}^{11}\right.$ dihydrazine diacetate, Ferrari, Braibanti, Bigliardi \& Lanfredi (1965)] and tetrahedral coordinations $\left[\mathrm{Zn}^{11}\right.$ di- n-alkyl phosphinates, Giancotti, Giordano, Randaccio \& Ripamonti (1968)], sometimes occurring with both
coordinations in the same structure (Ghose, 1964). The anhydrous $\mathrm{Zn}^{\mathrm{II}}$ di- n-alkyl phosphinates occur as onedimensional polymeric chains, adjacent Zn atoms being linked by alternately one and three phosphinate groups.

The isomorphous incorporation of a small amount of $\mathrm{Co}^{\text {II }}$ in anhydrous $\mathrm{Zn}^{\text {II }}$ acetate, propionate and butyrate gives a blue colour that suggests the Zn atoms in these compounds have a tetrahedral coordination as has been borne out by the structure of $\mathrm{Zn}^{\text {II }}$ propionate.

Experimental

Anhydrous $\mathrm{Zn}^{\text {II }}$ propionate was crystallized after ZnCO_{3} was added to propionic acid containing 10% propionic anhydride. The colourless crystals are tabular on (100) with the faces (100), ($\overline{1} 00$), (010), ($0 \overline{1} 0$), (001) and ($00 \overline{1}$) all well developed. Approximate density measurement by flotation and examination of final electron density maps verified the formula imposed by the structural determination.

Intensities and cell dimensions were obtained at $20^{\circ} \mathrm{C}$ on a Siemens automatic single-crystal diffractometer with $\mathrm{Cu} K \alpha$ radiation and Ni filters and attenuators. The integrated intensities were recorded by the four-value method (Hoppe, 1965; Stephenson, Beale \& Craig, 1968). The scanning procedure used the moving-crystal, moving-detector method ($\theta-2 \theta$ scan). Estimation of errors was from counting statistics. Data with a count above background of less than 3σ were regarded as unobserved and given a value for I of σ and were included in the refinement of $\Sigma w\left|\Delta F_{o}\right|^{2}$ only if $\left|F_{c}\right|>\left|F_{o}\right|$. Weights of $w=1 / \sigma^{2}\left(F_{o}\right)$ were used. Intensities were corrected for absorption with a weighted Gaussian grid (Coppens, Leiserowitz \& Rabinovich, 1965). The crystal used was bounded by planes at distances 0.0187 mm for (100) and ($\overline{100}$), 0.125 mm for (010) and ($0 \overline{\mathrm{l}} 0$) and 0.362 mm for (001) and ($00 \overline{\mathrm{l}}$) giving a mean free path length \bar{T} in the crystal ranging between 0.004 and $0.029 \mathrm{~cm}(\mu \bar{T}$ between 0.15 and $1 \cdot 10$ where $\mu=38.5 \mathrm{~cm}^{-1}$). 1613 nonequivalent reflexions were collected. During the data collection the standard reflexion (006) dropped in intensity to 0.65 of its original value. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Zn}$ has $a=19.144$ (4), $b=$ $4.794(1), c=9.286(2) \AA, \beta=91.8(2)^{\circ}, Z=4, \rho_{c}=$ $1.65 \mathrm{~g} \mathrm{~cm}^{-3}$ and crystallizes in space group $P 2_{1} / c(h 0 l$, $l=2 n$ only; $0 k 0, k=2 n$ only). The crystal was mounted with (100) at $5 \cdot 1^{\circ}$ to the spindle axis, the orientation matrix being

$$
U B=\left[\begin{array}{rrr}
0.00228 & -0.18530 & 0.04938 \\
0.00448 & -0.09440 & -0.09529 \\
0.05202 & 0.01624 & 0.00952
\end{array}\right]
$$

The crystal appeared to be curved and in the subsequent refinement reflexions with $|h|<4$ were seen con-
sistently to have a higher value of $\left|F_{o}\right|$ than $\left|F_{c}\right|$, this discrepancy being as much as 50%. Exclusion of these data left 876 non-equivalent observed reflexions (\bar{T} between 0.004 and $0.015 \mathrm{~cm}, \mu \bar{T}$ between 0.15 and 0.58), the excluded data corresponding to reflexions with long path lengths in the crystal.

Structure determination and refinement

The Zn atom was readily located at $\frac{1}{4}, \frac{1}{4}, \frac{1}{8}$ from the Patterson function. Equivalent positions for $P 2_{1} / c$ are then $\frac{1}{4}, \frac{1}{4}, \frac{1}{8} ; \frac{3}{4}, \frac{3}{4}, \frac{3}{8} ; \frac{5}{4}, \frac{5}{4}, \frac{5}{8} ; \frac{7}{4}, \frac{7}{4}, \frac{7}{8}$ corresponding to $x, y, z ; \bar{x}, \frac{1}{2}+y$, $\frac{1}{2}-z ; x, \frac{1}{2}-y, \frac{1}{2}+z ; \bar{x}, \bar{y}, \bar{z}$ respectively. These atoms lie in a straight line at points $\frac{1}{2}, \frac{1}{2}, \frac{1}{4}$ apart and so contribute only to reflexions with $2 h+2 k+l=4 n$. A Fourier map with just these reflexions gives an artificial $2 / m$ site symmetry about each Zn atom site. A general discussion of pseudosymmetry has been given by Rae (1975). Since the Zn atom is actually on a general position it was necessary to select a ZnO_{4} tetrahedron from the $16 \frac{1}{4}$ weight O atoms about each Zn atom site. Since $y= \pm \frac{1}{4}$ corresponds to the height of the glide plane only two possible tetrahedra needed to be considered, both giving an R of about 0.65 for all data. The remaining C atoms could be located by inference. The correct structure was determined by least-squares refinement of each possibility, refinement of the incorrect structure terminating at $R=0 \cdot 30$. Full-matrix least-squares refinement reduced the value of R to 0.121 for anisotropic atoms. A difference map located H atoms. These H atoms could not be refined and were included with the same thermal parameters as the atoms to which they were attached. Comparison of F_{o} and F_{c} showed $\left|F_{o}\right|>\left|F_{c}\right|$ for data with $|h|<4$ while data with $|h|>3$ had moderately good agreement. Further refinement with only observed data with $|h|>3$ reduced R for these data from 0.125 to 0.079 , changing the scale constant by 20% in the process. A final refinement cycle reduced R to 0.076 , no positional shifts being greater than $1 \cdot 0 \sigma$. Scattering factors for neutral atoms were used, the Zn atom scattering anomalously $\left(\Delta f^{\prime}=-1.612, \Delta f^{\prime \prime}=0.678\right)$ (International Tables for X-ray Crystallography, 1974). Extinction corrections were made with an anisotropic extinction parameter $R^{*}=\left(e^{2} / m c^{2} V\right) \lambda^{3} r^{*}$ where the modified $F_{c}^{*}=k\left|F_{c}\right|\left(1+2 r^{*}\left|F_{c}\right|^{2} \delta\right)^{-1 / 4}$,

$$
\delta=\left(\frac{e^{2}}{m c^{2} V}\right)^{2} \frac{\lambda^{3}}{\sin 2 \theta} \frac{1+\cos ^{4} 2 \theta}{1+\cos ^{2} 2 \theta} \times \bar{T}
$$

and \bar{T} is the mean path length in the crystal (in cm) (Larson, 1970). A value of 0.0006 (5) for R^{*} was obtained.

Structural results

Structural parameters are listed in Table 1.* The quoted standard deviations are not those calculated by standard procedures. They are obtained by multiplying the

[^1]Table 1. Structural parameters for $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Zn}\right)_{n}$ Fractional coordinates of atoms

	$x(\sigma)$	y (σ)	$z(\sigma)$
Zn	0.2507 (2)	$0 \cdot 2834$ (7)	0•1455 (4)
$\mathrm{O}(1)$	0.1663(7)	0.148 (4)	0.235 (2)
$\mathrm{O}(2)$	0.3323 (7)	1.065 (3)	0.194 (2)
O(3)	0.2259 (7)	0.233 (4)	0.437 (2)
$\mathrm{O}(4)$	0.2774 (7)	0.676 (4)	$0 \cdot 167$ (2)
C(1)	0.1750 (12)	$0 \cdot 128$ (5)	0.374 (3)
C(2)	0.3263 (11)	0.808 (6)	0.218 (3)
C(3)	$0 \cdot 1225$ (13)	-0.051 (8)	0.455 (3)
C(4)	0.3817 (14)	0.658 (7)	0.302 (4)
C(5)	0.0675 (14)	-0.188(9)	0.374 (4)
C(6)	0.4323 (17)	0.837 (10)	0.383 (6)
H(C3)	0.150	-0.07	0.525
$\mathrm{H}^{\prime}(\mathrm{C} 3)$	0.095	0. 10	0.485
$\mathrm{H}(\mathrm{C} 4)$	0.394	0.48	0.260
$\mathrm{H}^{\prime}(\mathrm{C} 4)$	0.350	$0 \cdot 50$	0.350
H(C5)	0.090	-0.30	0.300
$\mathrm{H}^{\prime}(\mathrm{C} 5)$	0.044	-0.10	0.290
$\mathrm{H}^{\prime \prime}(\mathrm{C} 5)$	0.020	-0.30	0.425
H(C6)	0.465	0.88	0.275
$\mathrm{H}^{\prime}(\mathrm{C} 6)$	0.480	0.75	0.400
$\mathrm{H}^{\prime \prime}(\mathrm{C} 6)$	0.425	1.00	0.420
Bond distances $[\AA(\sigma)]$			
$\mathrm{Zn}-\mathrm{O}(1)$	1.953 (13)	$\mathrm{C}(3)-\mathrm{H}(\mathrm{C} 3)$	0.8 (2)
$\mathrm{Zn}-\mathrm{O}(2)^{\text {i }}$	1.923 (15)	$\mathrm{C}(3)-\mathrm{H}^{\prime}(\mathrm{C} 3)$	0.9 (2)
$\mathrm{Zn}-\mathrm{O}(3)^{\text {i }}$	1.977 (16)	$\mathrm{C}(4)-\mathrm{H}(\mathrm{C} 4)$	1.0 (2)
$\mathrm{Zn}-\mathrm{O}(4)$	1.957 (18)	$\mathrm{C}(4)-\mathrm{H}^{\prime}(\mathrm{C} 4)$	$1 \cdot 1$ (2)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.30 (3)	$\mathrm{C}(5)-\mathrm{H}(\mathrm{C} 5)$	1.0 (2)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.26 (3)	$\mathrm{C}(5)-\mathrm{H}^{\prime}(\mathrm{C} 5)$	1.0 (2)
$\mathrm{O}(3)-\mathrm{C}(1)$	1.23 (3)	$\mathrm{C}(5)-\mathrm{H}^{\prime \prime}(\mathrm{C} 5)$	1.2 (2)
$\mathrm{O}(4)-\mathrm{C}(2)$	1.21 (3)	$\mathrm{C}(6)-\mathrm{H}(\mathrm{C} 6)$	1.2 (2)
$\mathrm{C}(1)-\mathrm{C}(3)$	1.54 (3)	$\mathrm{C}(6)-\mathrm{H}^{\prime}(\mathrm{C} 6)$	1.0 (2)
$\mathrm{C}(2)-\mathrm{C}(4)$	1.49(4)	$\mathrm{C}(6)-\mathrm{H}^{\prime \prime}(\mathrm{C} 6)$	$0 \cdot 9$ (2)

$\mathrm{C}(3)-\mathrm{C}(5) \quad 1.43(4)$

Bond angles $\left[{ }^{\circ}(\sigma)\right]$

$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)^{\mathrm{i}}$	$113 \cdot 3(7)$	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Zn}-\mathrm{O}(3)^{i \mathrm{i}}$	$112 \cdot 1(7)$
$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(3)^{\mathrm{ii}}$	$103 \cdot 1(6)$	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Zn}-\mathrm{O}(4)$	$107.0(7)$
$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(4)$	$119.6(7)$	$\mathrm{O}(3)^{\mathrm{ji}}-\mathrm{Zn}-\mathrm{O}(4)$	$1010(7)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(3)$	$121(2)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(4)$	$121(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	$117(2)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(4)$	$120(2)$
$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{C}(3)$	$121(3)$	$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(4)$	$119(3)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(5)$	$119(3)$	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)$	$116(3)$
$\mathrm{Zn}-\mathrm{O}(1)-\mathrm{C}(1)$	$111(2)$	$\mathrm{Zn}-\mathrm{O}(2)^{\mathrm{i}}-\mathrm{C}(2)^{i}$	$120(2)$
$\mathrm{Zn}-\mathrm{O}(3)^{\mathrm{ii}}-\mathrm{C}(1)^{\mathrm{ii}}$	$128(2)$	$\mathrm{Zn}-\mathrm{O}(4)-\mathrm{C}(2)$	$137(2)$

Symmetry code

(i) equivalent position $x,-1+y, z$
(ii) equivalent position $x, \frac{1}{2}-y,-\frac{1}{2}+z$
inverse of the least-squares matrix by such a factor as to make the observed variances for sets of equivalent bond lengths become reasonable. The reason for doing this is given in Table 2 where results of bond-length calculations for the non-hydrogen atoms are given for (a) refinement giving all reflexions weights from counting statistics and (b) excluding all reflexions with $|h|<$

Table 2. Comparison of bond lengths (\AA) for two refinements

(a) Refinement with all data, (b) refinement excluding data with $|h|<4$. Standard deviations calculated by the usual procedures are given for case (a).

	(a)	(b)
$\mathrm{Zn}-\mathrm{O}$ distances		
$\mathrm{Zn}-\mathrm{O}(1)$	$1.932(9)$	1.953
$\mathrm{Zn}-\mathrm{O}(2)^{\mathrm{i}}$	$1.885(10)$	1.923
$\mathrm{Zn}-\mathrm{O}\left(3 \mathrm{jii}^{\prime}\right.$	$1.972(10)$	1.977
$\mathrm{Zn}-\mathrm{O}(4)$	$1.976(9)$	1.957
Mean	1.942	1.953
Range	0.092	0.054
$\mathrm{O}-\mathrm{C}$ distances		
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.348(16)$	1.299
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.315(16)$	1.256
$\mathrm{O}(3)-\mathrm{C}(1)$	$1.244(15)$	1.229
$\mathrm{O}(4)-\mathrm{C}(2)$	$1.195(14)$	1.214
Mean	1.276	1.250
Range	0.153	0.085
$\mathrm{C}-\mathrm{C}$ distances		
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.491(19)$	1.537
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.477(22)$	1.486
$\mathrm{C}(3)-\mathrm{C}(5)$	$1.408(21)$	1.433
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.443(25)$	1.480
Mean	1.455	1.484
Range	0.083	0.104

Fig. 1. The [100] projection of the two-dimensional polymer layer at $x=\frac{1}{4}$. To aid visualization $\mathrm{C}(3)$ and $\mathrm{C}(5)$ have not everywhere been included.
4. Standard deviations calculated by standard procedures for case (a) are given, and demonstrate the inappropriateness of scaling weights to make $\Sigma w \Delta^{2} /(n-m)=1$ for error estimation when systematic errors occur in the assigning of relative weights.

The improvement in the ranges of comparable bond lengths for (b) is obvious for the $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}$ distances, and while this is not so for the $\mathrm{C}-\mathrm{C}$ distances, the mean $\mathrm{C}-\mathrm{C}$ distance is much more realistic. A systematic error in the data was reduced by excluding certain reflexions. However, the error still remains and its unknown covariance with the refined parameters has caused an underestimate of standard deviations. This characteristic is discussed by Rae (1975).

The structure consists of two-dimensional polymer sheets perpendicular to (100). Zn atoms at x, y, z and x, $1+y, z$ are linked by one propionate group and Zn atoms at x, y, z and $x, \frac{1}{2}-y, \frac{1}{2}+z$ by the other (Fig. 1).

The Zn atoms have a tetrahedral coordination and are linked in an anti-syn arrangement (Barclay \& Kennard, 1961). Associated with this link age is an apparent difference in $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ lengths: mean for $\mathrm{Zn}-\mathrm{O}(1)$ and $\mathrm{Zn}-\mathrm{O}(2)^{\mathrm{i}}$ of 1.938 (10) \AA compared with the mean for $\mathrm{Zn}-\mathrm{O}(3)^{\mathrm{i}}$ and $\mathrm{Zn}-\mathrm{O}(4)$ of 1.967 (12) \AA, and mean for $\mathrm{O}(1)-\mathrm{C}(1)$ and $\mathrm{O}(2)-\mathrm{C}(2)$ of 1.28 (2) \AA compared with the mean for $\mathrm{O}(3)-\mathrm{C}(1)$ and $\mathrm{O}(4)-\mathrm{C}(2)$ of $1.22(2) \AA$, but a comparison with variations in $\mathrm{C}-\mathrm{C}$ lengths makes it impossible to say that these differences are statistically significant.

References

Barclay, G. A. \& Kennard, C. H. L. (1961). J. Chem. Soc. pp. 3289-3294.
Bukowska-Strzyżewska, M. (1965). Acta Cryst. 19, 357362.

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Ferrari, A., Braibanti, A., Bigliardi, G. \& Lanfredi, A. M. (1965). Acta Cryst. 19, 548-555.

Ghose, S. (1964). Acta Cryst. 17, $1051-1057$.
Giancotti, V., Giordano, F., Randaccio, L. \& Ripamonti, A. (1968). J. Chem. Soc. (A), pp. 757-763.
Hoppe, W. (1965). Angew. Chem. 77, 484-492.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-98, 149-150. Birmingham: K ynoch Press.
Kiriyama, R., Ibamoto, H. \& Matsuo, K. (1954). Acta Cryst. 7, 482-483.
Krogman, K. \& Mattes, R. (1963). Z. Kristallogr. 118, 291-302.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, p. 291. Copenhagen: Munksgaard.
RaE, A. D. (1975). Acta Cryst. A31, 575-582.
Simonov, Yu. A. \& Malinovskii, T. L. (1970). Kristallografiya, 15, 370-371.
Stephenson, N. C., Beale, J. P. \& Craig, D. C. (1968). Natl. Bur. Stand. US, Monogr. No. 364.
Van Niekerk, N. K. \& Schoening, F. R. L. (1953a). Acta Cryst. 6, 609-612.
Van Niekerk, N.K. \& Schoening, F. R. L. (1953b). Acta Cryst. 6, 720-723.
Van Niekerk, N. K. \& Schoening, F. R. L. (1953c). Acta Cryst. 6, 227-232.

X-ray and Neutron Diffraction Studies of the Hydroquinone Clathrate of Hydrogen Chloride

By Jan C. A. Boeyens and Jan A. Pretorius
National Chemical Research Laboratory, PO Box 395, Pretoria, South Africa

(Received 22 November 1976; accepted 31 December 1976)
The crystals of $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2} \cdot x \mathrm{HCl}$, obtained from an ethereal solution of 1,4 -dihydroxybenzene saturated with HCl gas, have been examined by X-ray and neutron diffraction: rhombohedral. space group $R 3$, with a (hex) $=16.650(1), c=5.453$ (1) \AA. . In two independent analyses the structure was refined to $R(\mathrm{X}$-ray $)=0.036$ and R (neutron) $=0.069$. The HCl molecule is oriented within the quinol cavity because of a large number of weak

$$
-\mathrm{OH} \cdots \mathrm{Cl}-\mathrm{H} \cdots \stackrel{1}{\mathrm{OH}}
$$

interactions, which are responsible for lowering the symmetry.

Introduction

The X-ray photoelectron spectrum of HCl , clathrated in a β-quinol framework (Copperthwaite, 1976), differs
appreciably from the gas-phase spectrum, suggesting that the structure of the clathrate is not adequately described by the model of Palin \& Powell (1947) for the SO_{2} clathrate. According to this model the

[^0]: * Deceased 6 May 1975.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32417 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

